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J. Phys. A Math. Gen. 26 (1993) 5629-5630. Printed in &Fe UK 

COMMENT 

On path integrals and stationary probability distributions 
for stochastic systems: a reply 

A J McKane 
D e p ~ n t  of Theoretical physics, University of Manchester, Manohester MI3 9PL, UK 

h i v e d  6 May 1993 

Abstract. The above comment by Mulo2 claims thaI arecent paper by Rathay and McKane i s  
incorrect. This is not so. To refute these claims we first expose the envn in Mwioz’s comment 
and then restate Ihe basic elemenk of the procedure we used previously lo calculate stationary 
pmbability distributions. There are neither errors nor ‘puzzling feiuures’ in this approach when 
it is properly undemtwd. 

The key to understanding the various incorrect and confused statements in Muiioz’s 
comment [ I ]  is the following sentence (after equation (6)): ‘Setting the first variation 
of the action (4) equal to zero leads to 

i, = rtV‘(x,) : (1) 

ic = V’(x,)V”(x,). (2) 

i: = [V’(x,)12 + c 

In fact setting the first variation to zero leads to 

Integrating once gives 

(3) 

where C is an arbitrary constant. Muiioz sets C = 0, presumably because we did so 
in 121. but he then goes on to try to calculak the conditional probability distribution (CpD) 
P ( x ,  Tlxo,  0). Not surprisingly he gets into difficulties because he has only one constant 
available after integrating (3) and two conditions ( x ( T )  = x ,  x(0) = XO) to satisfy. In [Z] 
we only calculated the stationary probability distribution (SpD), and as such had the freedom 
to set C = 0 (see later for further discussion). 

In order to deal with the fact that the C = 0 solutions are too restrictive to calculate 
P ( x .  Tlxo.0) Muiloz goes through a roundabout and artificial procedure involving the 
introduction of a function f ( t )  designed to re-enlarge the class of solutions. We are saved 
from commenting on the validity of this method by noting that there is a major algebraic 
error in the derivation of his equation (9). To see this it is sufficient to ignore Gaussian 
fluctuations and set y = 0. Then the classical action is 

T 

s = ; ( i c  + s + V’(xc + f))* dl (4) 
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where xc = -V'(xc) .  Thus 

NOW we compare this with equation (9) of Muiioz. We set y = 0 in this equation and write 
the integrated first term back in integral form to obtain 

Muiioz does not specify the argument of V", but if his equation (IO) is to lead to equation 
(1 I), it must be x,. The only obvious way equations (5) and (6) can be equal for an arbitrary 
function f is if V'")(x) = 0, n 

The bulk of [l] therefore only applies to quadratic potentials. It is indeed fortunate that 
Mufioz chooses this very potential to test his formula (1  6)! 

There are many other wrong or misleading statements in [ 11 that we have not mentioned. 
For example, we disagree with the entire paragraph after equation (7) of that comment: 
the correct extremal solution has to satisfy the appropriate boundary conditions and 
ic = -V'(xc) does not whereas (in our case) i, = +V'(x,) does; there are no negative 
eigenvalues of the operator (only a zero eigenvalue-all others are positive); etc. However, 
hopefully we have done enough to convince the reader that the main arguments presented 
in [I] are incorrect and we can now go over the original calculation [2] highlighting the 
points that have been challenged 

Our starting point was the path-integral representation for the CPD P ( x ,  tlxo, to). 
Contrary to the claims of Muiioz we never gave a formula for this quantity similar to 
his equation (16). This is because we were only interested in finding the SPD f&) which 
is obtained from P ( x ,  t l x ~ ,  to) by letting T = t - to + 03. The determination of the CPD 
is difficult because, in general, we have to deal with C # 0 solutions of (3). But since the 
limit T + 03, the system 'forgets' its initial state we may make a convenient choice for 
xg to obtain /'&). We choose it to be the point which lies on the C = 0 trajectory (with 
x(C) = x) at time to. Let us stress again that this choice will not give the most general CPD, 
and we never claimed it did, but it is sufficient to determine P&). Hence we are led to 
study the 'uphill path beginning at a local minimum' in the infinitely distant past. This path 
passes through the paints x( tg )  ='XO and x(r)  = x and satisfies the equation ic = +V'(x,) .  
It was necessary to keep to large and negative during the calculation of the prefactor to 
P&) and to let 10 -+ -ca at the end of the calculation for technical reasons not relevant 
to the discussion here. 

The work criticised by Muiioz was not the main feature of 121; it served only as an 
introduction to the less trivial discussion of the determination of the stationary probability 
distribution of a particle subject to exponentially correlated noise. On re-examining the 
paper while writing this comment we have found nothing to change our belief that the 
paper is a correct analysis of the problems considered there. 

2, where V'"' is the nth derivative of the potential. 
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